

FERTILITY PRESERVATION

IN PATIENTS UNDERGOING

GONADOTOXIC TREATMENT

Farzaneh .Vashghani.Farahani T.U.M.S Feb/23/2022

INTRODUCTION

Treatment of :

- ✓ Malignancy& some precancerous conditions
- ✓ Benign conditions such as medical disorder or gender affirmation

May necessitate surgical resection of reproductive organs or administration of gonadotoxic chemotherapy or radiation therapy .

This often leads to infertility, which is a major quality of life concern.

PRETREATMENT COUNSELING

- Prior to initiating potentially gonadotoxic therapy, physicians should discuss the risk of treatment-induced infertility and possible interventions to preserve fertility.
- All patients with newly diagnosed cancer should meet with a reproductive endocrine and infertility specialist if fertility is a concern, preferably before treatment.
- The optimal approach depends upon ;
- \checkmark The specific disease,
- ✓ Time available,
- ✓ Patient age,
- ✓ The type of gonadotoxic treatment (Radiation versus Chemotherapy),
- ✓ Whether the patient has a partner,
- ✓ Costs, and long-term issues (storage and use of frozen gametes or embryos).

Diseases in which affected individuals may benefit from fertility preservation interventions

Childhood cancers*	Adult cancers	Autoimmune and hematologic diseases	Benign ovarian disease
Hodgkin and non-Hodgkin lymphoma	Breast cancer	Systemic lupus erythematosus	Benign ovarian masses requiring radical surgery
Ewing sarcoma	Infiltrative ductal Stage I-III	Behçet syndrome	Patients receiving pelvic radiation
Pelvic osteosarcoma	Infiltrative lobular Stage IV	Steroid-resistant glomerulonephritis	Solid organ tumors presenting in the pelvis
Wilms tumor	Cancer of the cervix	Rheumatoid arthritis	Ewing's sarcoma
Genital rhabdomyosarcoma	Squamous cell carcinoma	Inflammatory bowel disease	Osteosarcoma
Burkitt lymphoma	Adeno-/adenosquamous carcinoma	Progressive systemic sclerosis	Tumors of the spinal cord
Leukemia	Infiltrative lobular [¶] Stage	Juvenile idiopathic arthritis	Retroperitoneal sarcoma
Neuroblastoma	Malignancies of the gastrointestinal tract	Multiple sclerosis	Rectal cancer
		Pemphigus vulgaris	Idiopathic bone disease requiring radiation
		Autoimmune thrombocytopenia	Prophylactic oophorectomy
	1	Sickle cell disease	BRCA I and II germline mutation carriers
		Aplastic anemia	Hematopoietic stem cell transplantation

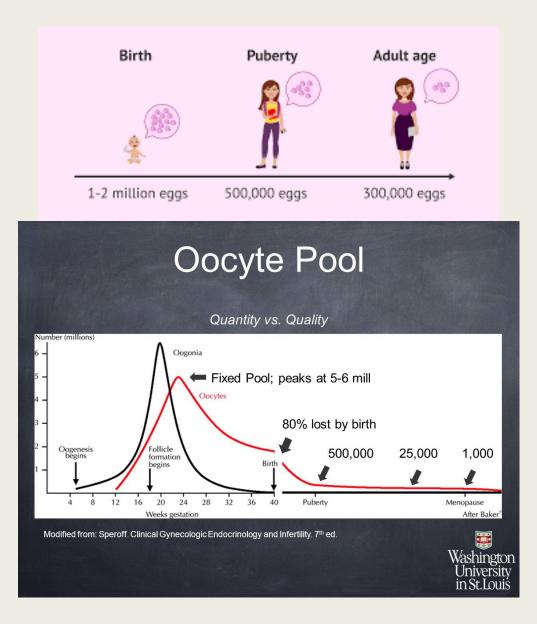
Chemotherapy

Chemotherapy-induced amenorrhea is a well-recognized side effect of cytotoxic chemotherapy.

- Amenorrhea is a poor surrogate for ovarian function and should not be considered as proof of menopause.
- Other factors such as :
- ✓ AMH<1ng/ml,
- ✓ FSH >10 IU (3^{rd} cycle day)
- ✓ Estradiol >80 pg/ml

Risk factors

There are well-recognized risk factors for chemotherapy-induced amenorrhea or ovarian failure:


□ Age

The risk of amenorrhea is greater in women who are over the age of 40 at the time of treatment initiation.

- ✓ Women under 30 years did not experience chemotherapy-induced amenorrhea.
- ✓ Chemotherapy-induced amenorrhea occurs in 96 % of women age 40 to 49 years.
- ✓ Ovarian function (evidenced by resumption of menses) returned in 50 percent of women younger than 40 years, but only in 10 percent of women over 40 years.

□ Chemotherapy regimen

Genetic factors

Chemotherapy-associated ovarian toxicity

Drug	Class (action)				
Definitely associated with ovarian damage					
Nitrogen mustard	Mechlorethamine (alkylating agent)				
L-phenylalanine mustard	Mechlorethamine (alkylating agent)				
Chlorambucil	Chloroethylamine (alkylating agent)				
Cyclophosphamide	Chloroethylamine (alkylating agent)				
Melphalan	Mechlorethamine (alkylating agent)				
Busulfan	Alkylalkane sulfonate (alkylating agent)				
Procarbazine	Substituted hydrazine				
Dacarbazine	Alkylating agent				
Probably associated with ovarian damage					
Vinblastine	Vinca alkaloid				
Cytosine arabinoside (Ara-C)	Antimetabolite				
Cis-platinum	Heavy metal				
Carmustine	Nitrosourea (alkylating agent)				
Lomustine	Nitrosourea (alkylating agent)				
VP-16 (etoposide)	Podophyllotoxin				
Imatinib	Tyrosine kinase inhibitor				
Low probability of ovarian damage					
Methotrexate	Antimetabolite				
Fluorouracil (5-FU)	Antimetabolite				
6-mercaptopurine	Antimetabolite				
Vincristine	Vinca alkaloid				
Mitomycin	Antibiotic (alkylating agent)				
Unknown					
VM-26	Podophyllotoxin				
Daunorubicin	Anthracycline				
Bleomycin	Peptide				
Vindesine	Vinca alkaloid				
Doxorubicin	Anthracycline				

Radiationtherapy

- Oocyte Radiosensivity is <2Gy
- The dose of radiotherapy that would result in immediate and permanent ovarian failure in 97.5 present of patients
- ✓ 20.3 Gy at birth
- ✓ 18.4 Gy at age 10 years
- ✓ 16.5 Gy at age 20 years
- ✓ 14.3 Gy at age 30years

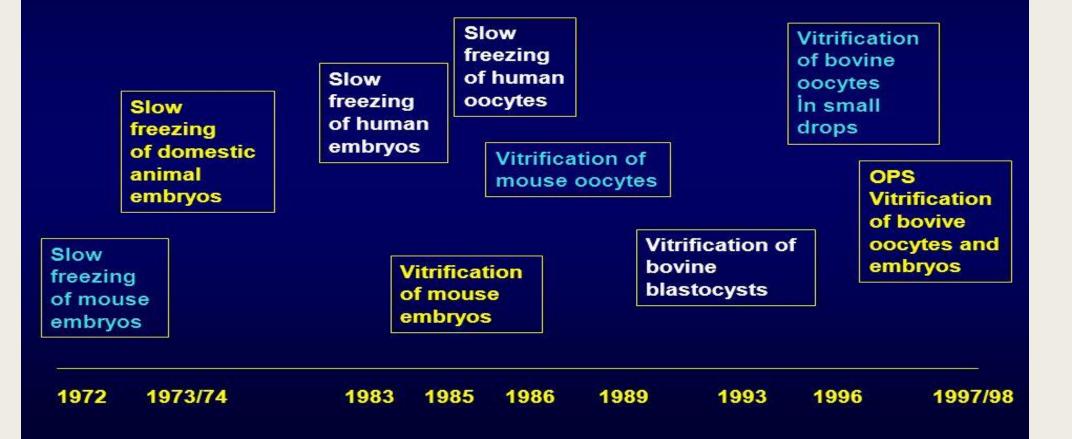
Radiation doses and risk of gonadal failure (High risk: > 80% sterilized; Mild risk: 20–80% sterilized; Low risk: < 20% sterilized)

Radiation Doses		Risk of Ovarian Failure			
	Prepubertal girls	15-40 years	> 40 years		
Pelvic/abdominal irradiation					
< 6Gy	Mild risk	No adverse effects	No adverse effects		
15 Gy	High risk	Low risk	Mild risk		
25-50 Gy	High risk	Mild risk	High risk		
50-80 Gy	High risk	Mild risk	High risk		
> 80 Gy	High risk	High risk	High risk		
Cranio-spinal irradiation > 25 Gy	Mild risk	Mild risk	Mild risk		
Total body irradiation	High risk	High risk	High risk		

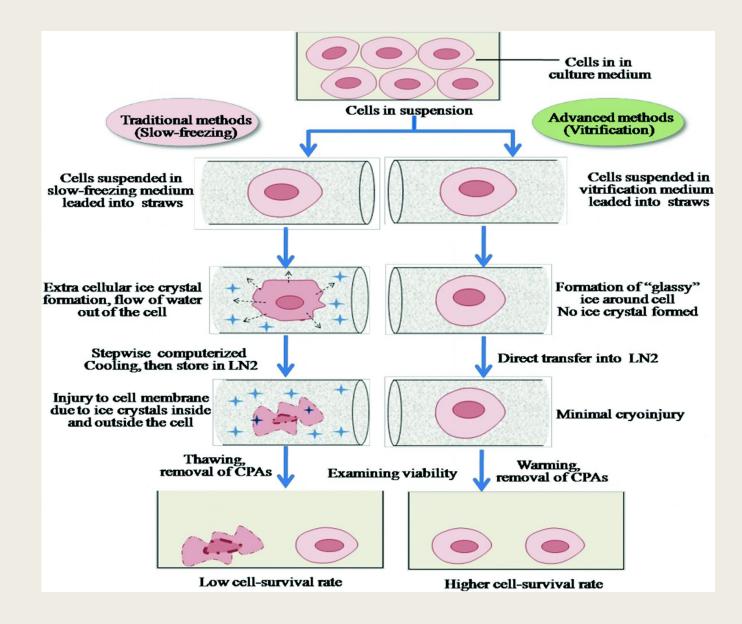
FERTILITY PRESERVATION

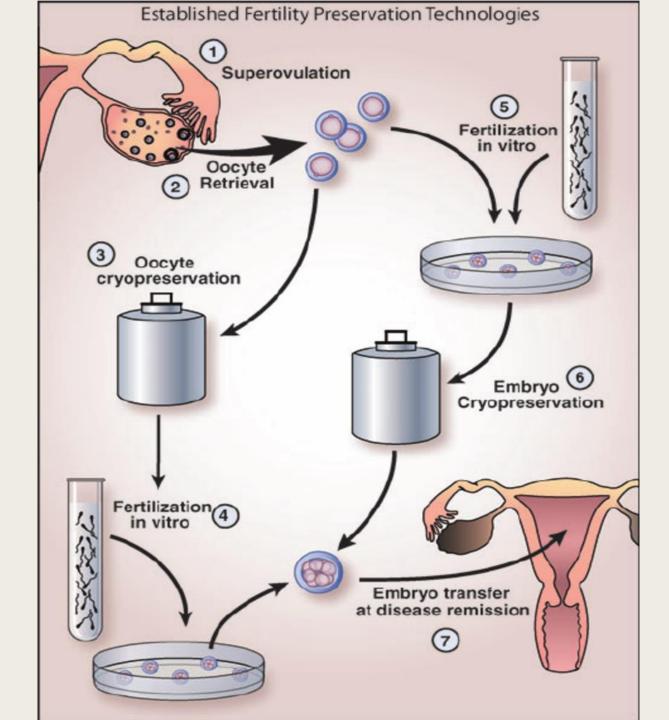
Cryopreservation

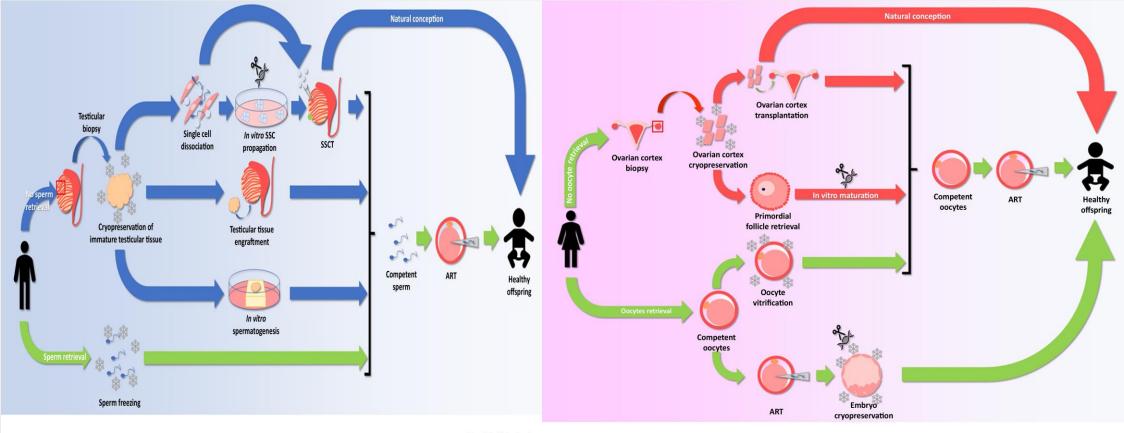
- Semen : successful and robust
- Oocyte : technically difficult but useful for:
- ✓ Creating donor egg banks
- ✓ Preserving fertility in young cancer survivors
- ✓ Preserving fertility in women deferring reproduction


Gonadal tissue

The presence of cancer probably does not affect ovarian reserve or responsiveness to gonadotropins prior to gonadotoxic therapy.


ASSESS PATIENT GOALS FOR THERAPY


- For prepubertal children investigational techniques include possible gonadal cryopreservation.
- Cryopreservation of embryos or gametes is the established method of fertility preservation for adults and post pubertal children.
- Use of GNRH agonists during chemotherapy
- ✓ Live birth rate is lower than proven ART technology
- \checkmark It does not preserve fertility in men



Gamete cryopreservation

TISSUE CRYOPRESERVATION

Trends in Biotechnology

Trends in Biotechnology

OTHER METHODS TO PRESERVE OR RESTORE FERTILITY

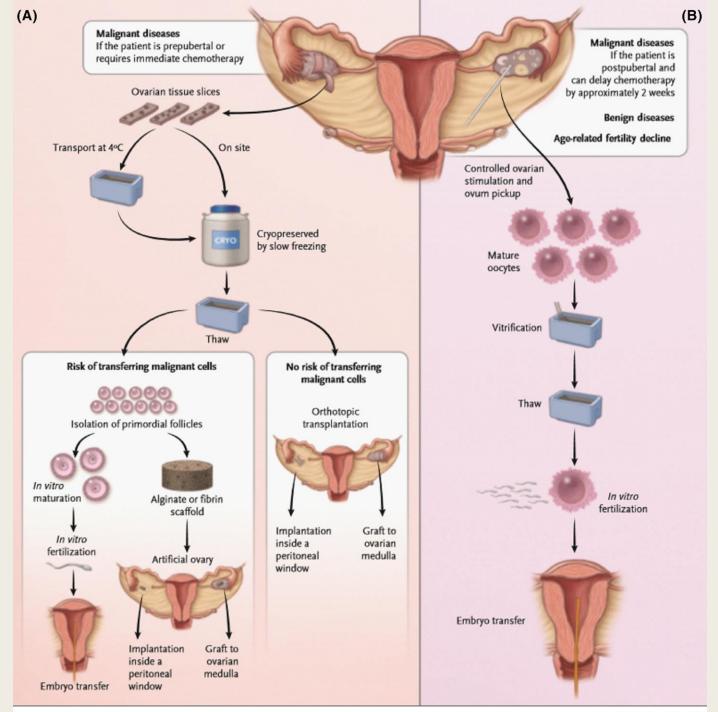
- Radical Trachelectomy for cervical cancer
- Hormonal therapy for early stage endometrial cancer
- Egg donation(fresh or frozen donor oocyte +partner's sperm can be used for IVF with success rates exceeding 60% per embryo transfer).
- Embryo donation
- Gestational carrier
- Adoption
- Uterus transplantation

OVARIAN HORMONE PRESERVATION

- For women who desire only potential preservation of ovarian hormone production:
- ✓ Premenopausal women with completed childbearing
- ✓ Women in whom established cryopreservation procedures are not an option
- Some practitioners discuss GNRH agonists to suppress ovarian function
- ✓ If used ,it should be coadministered during treatment
- \checkmark It can not replace established methods of fertility preservation
- \checkmark It can not be used for preservation of testicular hormone production .

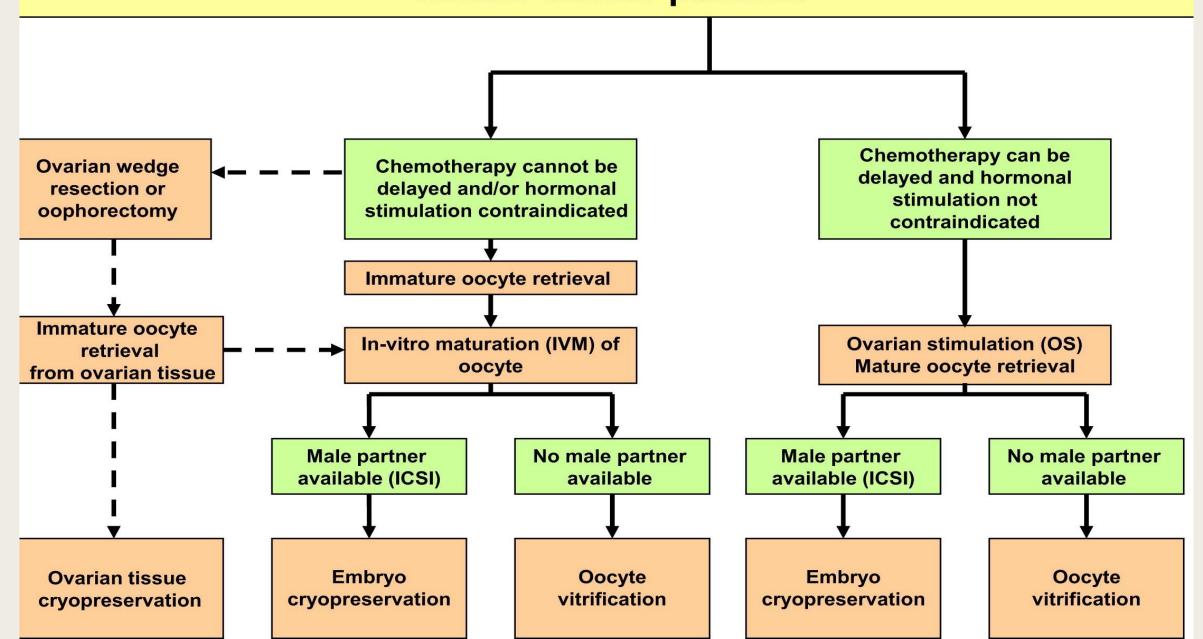
Women with heavy menstrual bleeding

✓ We do use GNRH agonist to prevent menorrhagia in women at risk of sever chemotherapy- induced thrombocytopenia.

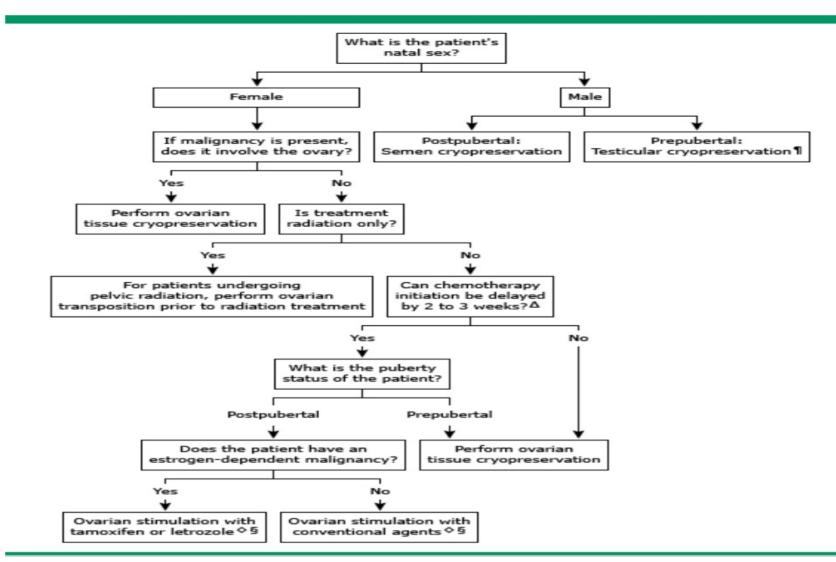

 ✓ If possible it should be initiated 2-3 weeks before therapy and continued until the end of chemotherapeutic treatment.

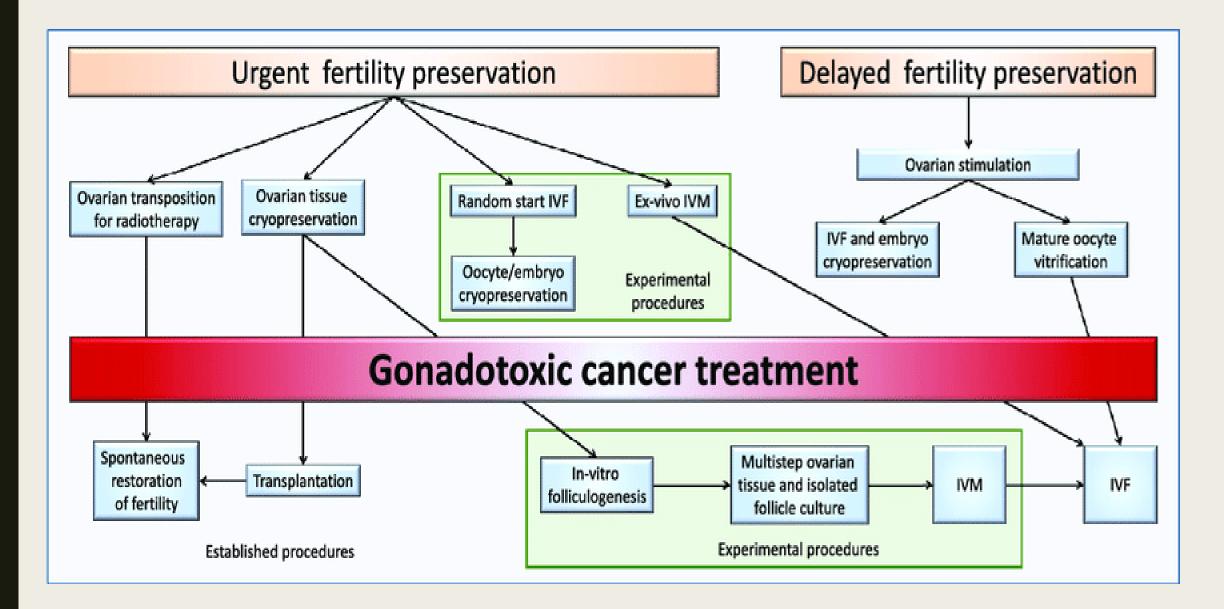
✓ Side effects include hot flushes and vaginal dryness

RADIATION – SPARING APPROACHES


Ovarian radiation can result in atrophy and decreased follicle number.

- The degree of ovarian damage depends upon the patients age and the dose of radiation delivered to the ovaries and can be compounded by the addition of chemotherapy.
- Transposition(oophoropexy)
- Shielding
- Autotransplantation




Trends in Molecular Medicine

Fertility preservation strategies offered to female cancer patients

Approach to fertility preservation for patients undergoing gonadotoxic therapy*

Thanks for your attention.

